Convective and absolute instabilities in the subcritical Ginzburg-Landau equation
نویسندگان
چکیده
منابع مشابه
Convective and Absolute Instabilities in the Subcritical Ginzburg-Landau Equation
We study the nature of the instability of the homogeneous steady states of the subcritical Ginzburg-Landau equation in the presence of group velocity. The shift of the absolute instability threshold of the trivial steady state, induced by the destabilizing cubic nonlinearities, is confirmed by the numerical analysis of the evolution of its perturbations. It is also shown that the dynamics of th...
متن کاملStationary Localized Solutions in the Subcritical Complex Ginzburg-Landau equation
The discovery of confined traveling waves in convection in binary fluids [Heinrichs et al., 1987; Kolodner et al., 1987; Kolodner et al., 1988; Niemela et al., 1990; Moses et al., 1987] has been a motivation for theoretical work on localized solutions of amplitude equations [Afanasjev et al., 1996; Akhmediev et al., 1996; Deissler & Brand, 1990, 1994, 1995; Fauve & Thual, 1990; Hakim & Pomeau, ...
متن کاملThe Complex Ginzburg-landau Equation∗
Essential to the derivation of the Ginzburg-Landau equation is assumption that the spatial variables of the vector field U(x, y, t) are defined on a cylindrical domain. This means that (x, y) ∈ R ×Ω, where Ω ⊂ R is a open and bounded domain (and m ≥ 1, n ≥ 0), so that U : R ×Ω×R+ → R . The N ×N constant coefficient matrix Sμ is assumed to be non-negative, in the sense that all its eigenvalues a...
متن کاملThe Ginzburg–Landau equation III. Vortex dynamics
In this paper we study the time-dependent Ginzburg–Landau equation of the Schrödinger type in two dimensions. The initial conditions are chosen to describe several well-separated vortices. Our task is to understand the vortex structure of the corresponding solutions as well as corrections due to radiation. To this end we develop the nonlinear adiabatic theory. Using the methods of effective act...
متن کاملPeriodic Solutions of the Ginzburg-landau Equation
Spatially periodic solutions to the Ginzburg-Landau equation are considered. In particular we obtain: criteria for primary and secondary bifurcation; limit cycle solutions; nonlinear dispersion relations relating spatial and temporal frequencies. Only relatively simple tools appear in the treatment and as a result a wide range of parameter cases are considered. Finally we briefly treat the case...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The European Physical Journal B - Condensed Matter and Complex Systems
سال: 1999
ISSN: 1434-6028,1434-6036
DOI: 10.1007/s100510050964